Acta Cryst. (1972). B28, 2640

The Crystal and Molecular Structure of *trans*-Dichlorotetrakis(thioacetamide)Ni(II)

By R. L. Girling,* J. E. O'Connor[†] and E. L. Amma[‡]

Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

(Received 13 April 1972)

The crystal structure of *trans*-dichlorotetrakis(thioacetamide)Ni(II) has been determined from 3005 intensities measured at room temperature using counter techniques and refined by full-matrix least-squares to a final R of 0.034. The space group is $P\overline{1}$, Z=2, $d_m=1.55$, $d_c=1.55$ g.cm⁻³ with a=13.501 (5), b=9.581 (6), c=9.880 (7) Å, $\alpha=90.8$ (1), $\beta=134.4$ (1), $\gamma=90.8$ (1)°. There are two crystallographically independent molecules per cell with the Ni atoms on centers of symmetry demanding the *trans* configuration, equal Ni–Cl distances within the molecule and coplanarity of the Ni and its four sulfur nearest neighbors. The two independent Ni–Cl distances are 2.427 (1) and 2.430 (1) Å. The four independent Ni–S distances are 2.460 (1), 2.458 (1) and 2.459 (1) Å. The thioacetamide molecules (excluding hydrogen atoms) are planar. Only normal van der Waals distances are found between molecules. The S–C, C–N and C–C distances are within one standard deviation (± 0.004 , ± 0.006 , ± 0.006) of the average of the four independent distances of 1.679, 1.307 and 1.502 Å respectively.

Introduction

Thiourea (tu) has several possible modes of binding to transition metals: (1) via the nitrogen atom, that is behaving as a N-donor, which has never been observed; (2) binding through the sulfur lone-pair orbitals. The latter mode seems to be the most common and has been shown to exist by a number of structure determinations of thiourea and thiourea-derivatives complexed with transition metals (Berta, Spofford, Boldrini & Amma, 1970; O'Connor & Amma, 1969; Weininger, O'Connor & Amma, 1969; Spofford, Boldrini, Amma, Carfagno & Gentile, 1970; Nardelli, Gasparri, Battistini & Domiano, 1966; Lopez-Castro & Truter, 1963; Gasparri, Mangia, Musatti & Nardelli, 1969; Sirigu, 1969; Nardelli, Gasparri, Musatti & Manfredotti, 1966; Robinson, Holt & Carpenter, 1967; Lüth & Truter, 1968.) The third possibility is *via* the sulfur–carbon π -orbitals. This has been observed in Cotu₄(NO₃)₂ and Cotu₄(NO₃)₂.2H₂O (Spofford, Boldrini, Amma, Carfagno & Gentile, 1970). The color and, consequently, the spectra of Nitu₄Cl₂ and also of NiCl, with derivatives of thiourea, are quite interesting; for example, *trans*-Nitu₄Cl₂ is olive green with two distinctly different Ni–Cl distances of 2.40(2)and 2.52 (2) Å (Lopez-Castro & Truter, 1963). This particular structure has an umbrella-like arrangement with a real fourfold axis and the thiourea groups tipped toward one of the apical chlorines. Somewhat surprisingly the thiourea groups are tipped toward, and hydrogen bonded to, the chlorine belonging to the shortest Ni-Cl distance. This compound was once thought to be representative of the entire series of transition metal thiourea complexes with the same

structure, *i.e.* where the metal was Ni, Co, Mg, Fe and Cd (Cavalca, Nardelli & Braibanti, 1956). However, we have shown in an earlier publication that trans-Nitu₄Cl₂ is unique and the other members of this series have equal metal-chlorine distances (O'Connor & Amma, 1969). In fact, in all of these cases the metal sits on a center of symmetry. However, trans-dichlorotetrakis(ethylenethiourea) Ni(II) is polymorphic, crystallizing in two forms, both of which have been shown to have Ni(II) coordinated to 4S and 2Cl in a trans arrangement (Robinson, Holt & Carpenter, 1967). Lüth & Truter (1968) found in dichlorotetrakis(trimethylenethiourea)Ni(II) that again the coordination polyhedron is made up of four sulfur atoms and two chlorine atoms in a trans octahedral geometry. In all of these cases the metal is bound to the sulfur by what appears to be a non-bonding sp^2 lobe of the sulfur atom.

Nardelli & Chierici (1957) have reported the preparation of $M(tac)_2Cl_2$ where M=iron, cobalt, zinc or cadmium and tac=thioacetamide. The electronic and vibrational spectra of $M(tac)_2X_2$ were reported by Flint & Goodgame (1968), where M is as above and M'=Ni, Pd, Pt and Cd, and X=Cl or Br. Nardelli & Chierici (1958) also reported the preparation of a complex having the stoichiometry $M(tac)_4Cl_2$, where M=Ni or Cd. The only other crystal structures of transition metal complexes with thioacetamide thus far reported are those of bis(thioacetamide)Ni(II) thiocyanate (Capacchi, Gasparri, Nardelli & Pelizzi, 1968) and tetrakis(thioacetamide)Ni(II) bromide (Spofford, Boldrini & Amma, 1971).

Experimental

Dichlorotetrakis(thioacetamide)nickel(II), Ni(tac)₄Cl₂, was prepared as follows: 3 g (0.038 mole) powdered thioacetamide were added with constant stirring to 25 ml of hot ethanol in which 2 g (\sim 0.01 mole) of NiCl₂.6H₂O had been dissolved. The crude product

^{*} Partial fulfillment for the Ph.D. requirements at the University of South Carolina, 1969.

[†] Present address: National Cash Register Co., Dayton, Ohio, U.S.A.

[‡] Author to whom correspondence should be addressed.

Table 1 (a). Observed and calculated structure factors

First column is h followed by 10F(obs) and 10F(calc) on an absolute scale. Reflections denoted by a negative F(obs) were not used in the refinement.

$ \begin{bmatrix} 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & $
$ \frac{1}{17} - \frac{1}{10} = \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10}$
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
$ \begin{array}{c} -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 $
$ \begin{array}{c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 $
$ \begin{array}{c} 9 & 96 & 196 & -16 & 106 & 107 & 106 & 107 & -37 & -13 & -$
$ \begin{array}{c} -12 & -99 & 103 & 112 & -74 & 111 & -12 & -121 & -$
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
$ \begin{array}{c} h \ 270 \ 273 \ 2 \ 64 \ -75 \ 77 \ 77 \ 77 \ 77 \ 77 \ 77 \ 7$
$ \begin{array}{c} 2 & 62 & -65 & -5 & -6 & -1 & +1 & +1 & +1 & +1 & +1 & +1 & +1$
$\begin{array}{c} -7 & 700 & 77 & -33 & 49 & -2 & 111 & 113 & 7 & 728 & 711 & 2 & 114 & -16 & 9 & -6 & (1 - 3) & -3 & 100 & 100 & 9 & -30 & 100 & -7 & 130 & 114 & -6 & 124 & 124 & 18 & 70 & 23 & -14 & 31 & 78 & -14 & 93 & 98 & -2 & 94 & 96 & -2 & 94 & 96 & -2 & 910 & 914 & -6 & 914 & 914 & -6 & 124 & 124 & 18 & 70 & 23 & -14 & 137 & -128 & 916 & 916 & -218 & -2$
$ \begin{array}{c} \mathbf{u}_{0} = \left[101 - 71 - 9 - 72 - 52 - 72 - 97 - 707 - 9 - 9 - 72 - 162 - 127 - 71 - 71 - 71 - 71 - 71 - 71 - $
-13 49 48 H/m -5 Lm 1 5 77 -73 -13 75 62 -7 168 1/1 1, 2 -39 -7 77 16 16 -2 17 45 -2 17 45 -1 49 -50 -2 170 -116 3 67 60 -8 43 -37 1 76 67 4 69 H/m 4 Lm 0 0 826 Px8 -6 44 48 H/m 2 Lm 2 -8 41 35 -5 126 125 17 -7 -1 117 117 3 114 112 12 23 87 3 66 -67 H/m-1 Lm 8 H/m 8 Lm 8 -1 71 74 -6 48 -1 133 -123 1 54 47 6 83 R0 -6 1 44 57 -7 0 60 80 -7 126 125 17 -7 -1 117 117 3 114 112 12 23 87 3 66 -67 H/m-1 Lm 8 H/m 8 Lm 8 -1 71 74 -6 48
1 204 206 -3 100 101 -7 74 75 1 65 -74 6 137 122 9 61 -54 -10 34 7 10 - 7 9 60 -5 79 60 -5 79 60 7 14 15 1 -7 74 75 1 - 64 - 7 79 7 9 7 3 8 7 9 8 - 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7
-3 199-167, 4 413 408 -1 74 77 -3 66 66 +/* -5 (-3 0 136 160 12 43 46 10 44 39 -7 41 43 2 70 77 -6 104 -108 -2 46 48 2 79 77 6 75 -79 -2 81 3 169 192 -5 99 17 2 36 -57 3 38 -44 0 156 120 -2 74 00 13 52 55 11 -6 (L 5 5 41 46 3 145 150 7 97 101 2 49 48 6 77 71 +/* -4 L 10 2 59 4 310 313 5 79 -71 3 61 63 -4 106 106 -1 41 -43 3 53 53 11 - 0 (L 4 0 61 10 - 15 107 -12 (L 31 3) 42 133 - 142 143 4 52 +/* -10 (L 6 9 7 12 1) 4 44 4
-4, 375, 370, 8, 97, 94, 4, 69, -67, 4, 270, 271, 2, 74, -77, -3, 60, -57, 1; 112, -106, -1, 112, 110, -11, 44, 46, 4, 152, 142, 8, 8, 9, 16, 9, 16, 17, 16, 15, 142, -45, 40, 2, 44, 54, 40, 2, 46, 45, 40, 15, 142, -15, 15, 142, -5, 162, 160, -16, 17, 110, 104, 104, 1237, 227, 11, 16, 15, 15, 15, 15, 15, 14, 144, 54, 54, 12, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46
-b 163 166 10 90 -90 H = 11 L = 1 -b 71 70 3 7F 71 -5 64, -59 2 168 176 3 135 136 -2 75 -74 6 142 137 -10 30 -34 m x -5 L = 0 3 47 49 -5 47 -1 37 -7 63 -64, -12 100 111 0 47 47 61 122 122 4 61 63 -6 49 47 3 190 105 +3 174 164 4 67 63 -6 40 37 10 45 -46 -1 48 -41 H x -9 L = 9 -5 61 -57 1 37 7 91 86 H x -12 L = 1 -2 79 F0 -F 227 224 +1 142 147 -7 71 -72 -3 202 -210 -4 122 133 5 52 -52 7 136 129 11 74 81 -4 50 46 -3 48 44 -7 49 -54 3 58 9 10 10 -10 -10 17 -10 17 -10 17 -7 71 -72 -3 202 -210 -4 122 133 5 52 -52 7 136 129 11 74 81 -4 50 46 -3 48 44 -7 49 -54 3 58
0 100 96 0 47 44 440 2 50 57 16 62 44 -1 1 417 -2 59 71 -4 522 97 75 10 5 109 1120 6 7 57 57 6 6 50 48 0 142 144 8 53 55 0 56 55 1 89 87 0 54 11 111 14 14 12 143 5 47 -12 7 39 39 -2 97 96 -8 50 48 0 142 144 8 53 55 0 56 55 1 89 87 0 54 11 13 14 12 143 5 47 -2 7 37 39 -2 97 96 -8 50 48 0 142 144 8 53 55 0 56 55 1 89 87 0 54 11 13 12 143 5 47 -2 7 37 39 -2 7 7 56 6 8 50 48 0 142 144 8 53 55 0 56 55 1 89 87 0 54
12 73 70 / 95 -69 -1 13/ 125 -11 70 -75 -7 107 -107 2 119 120 -6 36 39 -7 1/5 -107 -9 61 -1 54 54 6 52 -52 3 74 73 2 60 -12 83 87 -4 85 -90 1 65 66 12 107 112 -6 113 10 3 194 193 -7 135 -127 9 63 69 H* 8 L = 5 11 57 62 2 96 97 -2 91 -90 7 45 53 -3 70 75 H* 8 L = 1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +
-1 55 63 -5 84 81 -3 69 71 H + -3 Lo 2 -10 62 72 L 67 69 r 81 91 H + -1 Lo 3 + 107 103 H + 2 Lo 6 3 146 145 4 106 111 0 94 94 -4 61 -63 H Ko 9 Lo -1 268 229 -6 148 -139 -5 81 81 -1 80 82 10 65 79 4, 118 -118 -11 17 116 0 73 72 -2 73 64 0 121 125 -3 107 -113 -5 79 77 2 68 65 -5 81 88 0 28 2 99 99 6 38 -39 H + 13 Lo 1 1 38 -143 -12 60 61 -(170 165 -9 A2 1A2 1 67 -66 37 75 73 1 184 -187 A 199 155 57 87 2-2 68 65 -5 81 88 0 28 -2 9 19 -13 Lo 1 13 -13 1-3 1-2 60 65 -5 81 88 0 28 -10 10 10 10 10 10 10 10 10 10 10 10 10 1
-2 89 -88 -7 140 133 0 61 61 -2 123 115 H = 4 (L= 3 6 (20 83-10 16 + 14) -1 117 114 -5 111 109 -1 149 130 -4 168 179 -5 49 -49 -4 76 77 -5 97 -50 9 1 32 182 -6 14 -50 11 7; 7; -2 71 72 5 69 69 2 34 -57 5 76 72 7 79 69 4 51 48 5 71 73 H* -3 268 268 -6 54 -57 2 60 60 2 61 -59 1 132 182 -6 14 -50 11 7; 7; -2 71 72 5 69 69 2 34 -57 5 76 72 77 79 69 4 14 15 71 73 H* -3 27 -53 -9 61 61 H -12 (-2 3 47 5) -1 61 -53 7 45 (4) 17 132 100 106 3 10 -36 -6 48 51 -2 61 -62 -6 84 86 -7 73 77 6 49 47 -7 48 50 0 44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
-11 56 58 3 339 325 1 129 131 8 63 -63 6 89 91 4 70 81 1 55 46 9 53 -55 2 134 129 -7 47 43 H -2 Le 7 -4 61 63 -3 106 107 3 109 107 -5 46 11 50 48 4 429 428 -1 56 52 9 132 132 -7 248 245 4 90 26 -; 126 120 10 48 56 4 87 26 7 72 48 0 62 61 -5 75 78 3 134 137 -4 76 77 5 80 H + 6 Le 0 -4 189 380 3 67 66 -9 143 147 7 72 73 5 9 34 5 108 178 H -4 Le 5 -4 142 141 -1 94 92 6 6 86 86 -4 114 18 9 99 99 H - 1 Le
0 92 77 5 205 206 -3 88 99 -10 67 -66 -8 40 42 -6 56 55 -6 72 72 0 92 91 -5 57 54 8 14€ 151 1 163 157 -5 147 49 5 94 91 5 02 76 147 49 -5 54 -2 56 -64 -5 242 -240 -4 63 65 11 141 145 8 139 141 -8 62 65 7 82 76 1 405 396 6 74 51 -9 75 73 2 86 -83 -7 00 42 6 60 -63 -6 45 49 -5 -3 59 -52 6 43 -58 5 88 92 -12 58 -62 9 159 153 H& 10 L 3 -0 16 37 -1 261 253 -6 43 49 9 75 73 2 114 119 5 74 82 7 55 52 7 98 93 6 48
4 14/153 7 160 149 H = -10 - 2 H = 4 (= 2 - 9 / 2 / 5 - 3 43 - 14 - 10 52 53 2 / 10 - 88 - 7 44 45 10 41 59 57 4 4 47 H = -5 (= 8 0 100 100 11 44 46 0 495 106 - 107 - 8 233 241 - 2 56 53 - 1 141 132 11 54 55 - 5 20 49 H = 2 13 - 120 A 3 30 - 10 59 57 4 4 47 H = -5 (= 8 0 100 100 11 44 46 0 495 106 - 107 - 8 233 241 - 2 56 53 - 1 141 132 11 54 55 - 5 20 49 H = 2 15 - 2 10 - 5 - 11 58 - 9 - 4 155 172 0 90 88 - 1 89 90 - 2 57 - 57 - 2 65
-7 51 -52 -9 41 -42 -3 60 53 2 123 126 -4 337 331 -5 54 -55 -2 146 175 -5 49 53 -2 52 55 0 46 -52 -7 113 113 -3 46 45 -2 63 66 H & 0 = 0 4 48 -8 15 132 -3 60 53 -6 53 56 -4 337 331 -5 54 -55 -2 146 175 -5 49 53 -2 52 55 0 46 -52 -7 113 113 -3 46 45 -2 63 66 H & 0 = 0 4 48 -8 15 132 -13 80 85 -6 4 -3 56 -4 337 331 -5 54 -55 -2 146 175 -5 49 53 -2 52 55 0 46 -52 -7 113 113 -3 46 45 -2 63 66 H & 0 = 0 4 48 -8 15 132 -13 80 85 -6 4 -3 56 -4 337 331 -5 54 -5 52 -5 146 -5 56 -5 16 -5 56 -5 16 -5 56 -5 16 -5 56 -5 16 -5 56 -5 16 -5 56 -5 16 -5 56 -5 16 -5 56 -5 56 -5 16 -5 56 -5 56 -5 16 -5 56 -5
9 44 - 48 - 13 4.5 1.4 6 1.3 4.5 1.4 6 1.2 57 2 6 - 5 178 173 - 7 44 - 13 1 5 - 15 1 4 82 - 81 - 1 104 - 102 - 8 94 95 - 5 52 53 - 3 64 63 1 50 - 51 - 6 49 9 9 41 - 39 4 1 - 9 41 - 39 - 66 - 1, 39 - 66 39 5 - 7 47 - 70 4 5 - 12 - 3 156 - 12 - 13 1 5 - 13 1 5 - 12 - 13 1 5 - 13 1 5 - 13 1 5 - 13 1 5 - 12 - 13 1 5
12 55 53 3 306 306 1 165 160 -7 66 71 6 114 114 2 63 60 5 197 -196 9 81 75 1 42 -17 3 50 49 -11 63 64 -7 61 62 5 141 -144 -6 107 109 -1 65 -12 67 73 4 278 276 -1 3 73 4 7 66 79 -7 77 71 3 61 57 6 72 -74 12 47 55 3 79 -61 -4 36 34 H = 1 4 7 7 53 67 7 78 -80 6 49 47 2 64 H = 7 1 6 0 7 2 41 -39 8 193 189 -7 75 6 72 -7 71 3 61 57 6 72 -74 12 47 55 3 79 -61 -4 36 34 H = 1 4 7 7 53 67 7 6 72 -4 1 -3 73
1 50 -50 -5 (203 193 -3 113 113 -P 150 148 8 230 234 + r = 12 (= 4 -7 104 -100 0 546 758 H × 12 (= 5 5 84 79 -1 107 110 H = 5 0 -20 0 0 0 5 0 40 2 7 147 -10 0 1 -1 15 (5 5 -5 37 36 1 107 110 H = -1 1 H = 10 7 110 H = -1 1 H = 10 7 110 H = -1 1 H = 10 7 110 H = -1 1 H = 10 7 110 H = -1 1 H = 10 7 110 H = -1 1 H = -1 H
3 100 1/1 / 100 000 -7/49 49 11 20 15 10 00 -7 -1 43 50 11 51 97 -2 226 227 -2 41 49 0 20 -2 00 -2 00 -3 14 54 2 74 -74 -44 42 -36 H r OL 4 193 201 -7 144 142 9 62 64 12 82 85 -11 44 -48 -3 66 66 -9 59 54 -3 66 -70 H -11 6 7 7 145 143 4 110 111 3 14 54 2 74 -74 -44 42 -36 H r OL -4 125 -123 10 61 59 H r -8 -2 -2 48 48 12 71 79 3 16 56 -9 59 54 -3 112 112 -1 45 47 -7 66 67 -4 85 84 -5 89 3 3 48 46 4 94 91 -1 47 -5 130 146 -6 80 60 70 75 75 10 -75 55 63 55 84 15 75 10 -6 12 10 11 75 10 81 46 46 49 4 91 -1 47
6 107-104 6 35 61 -2 186 187 0 99 -97 Η 7 -2 1 3 Η -10 1 1 4 12 13 16 1 27 26 5 12 122 -5 201 208 5 16 -5 05 5 45 46 -5 108 107 -2 53 6 74 77 -11 56 59 2 225 231 1 174 123 0 103 95 6 46 42 Η -3 16 4 -5 102 104 -3 72 68 9 104 103 -6 99 101 -6 81 86 -6 80 -83 -6 48 -44 2 7 13 139 13 44 41 -3 57 -60 -1 370 37 -1 158 -56 46 42 1 -1 09 119 -5 5 -56 5 5 -22 -4 60 57 -11 9 13 44 51 0 11 6 61 63 6 103 -6 48 -44 2 7 2 69 5 101 -1 10 11 6 61 6 61 0 -1 0 0 27 6 5 5 -22 6 5 5 -22 -4 60 57 -1 1 9 16 11 1 6 61 63 6 103 -10 5 -26 5 5 -22 -4 60 57 -1 1 9 15 -55 5 -55 5 -1 12 -4 5 5 -55 5 -1 12 -4 5 5 -55 5
- 8 44 -43 H/= 1 4 179 181 2 133 -135 -2 135 139 H/= 9 4/= 2 173 163 -6 4 1 57 5 40 55 11 71 74 -7 44 -47 -7 52 -71 H'= 79 7 104 99 -7 30 -9 157 162 -1 71 -57 -4 91 91 -2 154 155 2 2 67 -255 -1 49 -45 -2 104 -100 7 126 125 H'= 10 L 6 6 B 140 13 -0 B 74 0 147 140 -7 103 107 H'= 1 L -1 83 64 3 216 206 6 67 67 3 316 335 -3 130 133 - 2 78 -79 3 106 107 -7 35 -33 0 77 75 6 4 5 54 -6 129 120 0 107 115 -2 122 125 -9 67 67 -7 8
H K = 8 L = 0 - 3 230 -215 H K = -7 L = 2 -3 171 166 -4 177 161 3 50 -46 -3 36 -24 -(42 39 2 96 98 -1 96 99 9 175 -11, 10 00 75 7 12 -7 14 16 -12 0 3 71 0 96 94 -1 355 342 0 70 72 4 148 -155 -50 -3 0, 94 -1, 229 -230 94, 96 -2 49 47 1 86 -86 10 56 57 12 57 12 -7 12 -10 3 71 2 78 81 4 421 116 1 300 288 -4 129 131 -5 73 61 4 76 91 - 0 0 77 10 61 -61 -3 83 76 2 45 -51 -10 67 65 H L = -5 L = 8 3 71 71 0 62 59 -3 71 2 78 81 4 421 116 1 300 288 -4 129 131 -5 73 61 4 76 91 - 0 77 10 61 -61 -3 83 76 2 45 -51 -10 67 65 H L = -5 L = 8 3 71 71 0 62 59 -3 71
- 6 00 02 2 01 77 - 1 07 20 3 23 49 7 47 470 5 00 h1 - 1 c1 11 13 57 5 32 - 32 - 32 - 32 - 32 - 32 - 32 - 32
5 35 55 36 -8 324 322 4 48 55 7 152 147 -7 178 177 -9 85 91 77 66 61 -1 243 246 7 64 -68 3 40 -43 1 32 -35 -3 177 182 -7 64 -69 -3 57 -54 2 177 1 -5 77 79 8 140 135 5 221 217 -8 70 69 8 66 -72 #**-8, -4 -9 10 -108 2 100 -108 # 7 64 -68 -5 53 50 -2 55 7 3 143 138 7 67 70 3 86 87 -49 14 -10 140 -108 2 100 -108 47 -66 -56 64 2 2 7 -7 3 143 138 7 67 70 3 86 87 -49 14 -10 140 -108 2 100 -108 47 -66 66 64 2 7 -7 57 -100 130 142 -7 65 54 2 17 1
6 85 87 -10 81 82 9 44 45 -9 86 87 9 205 210 -2 75 70 11 46 49 -3 222 230 7 48 44 6 59 57 -3 62 50 -5 77 81 88 -2 5 9 46 78 74 - 8 42 7 40 35 10 80 -79 -11 75 75 -10 57 36 -9 83 72 2 64 57 -11 44 43 4 67 76 9 -2 10 -46 -7 62 -63 4 73 -72 51 11 112 0 38 40 -5 75 75 6 107 103 7 46 -7 45 49 12 67 71 1146 6 -2 10 71 40 -11 109 110 3 46 52 114 4 4 4 4 6 7 69 -2 10 -4 74 10 -4 04 89 6 70 -10 1 243 245 6 107 103 7 46
n francjustu (j - 1 / j - 1 y - 5) 3 - 7 1 (r - 6 y - 2) 1 (v - 1 V - 6 (z - 6 - 3 21 k - 27) - 7) 103 99 £ £ (- 7 L 6 - 7 L 6 - 7 1 (k - 7 2 - 3) 7 (k - 7 1 z - 5) 7 (k - 7 1 z -

264.300599466746642240926582300784556674437757474767475744541527169510955555443775 264.3005994667452424092658230078455667443715270425714541527199509555555443775 261.9019948674644224092658230078455674437152704257145415141994969494999494191944415241994199949491994949994575 - 5907917764296450084650353777477477139671446415055544527794849645077194641545777237 7536730 776730 7949 10558844687 1156762 124629446 16442 16442 16442 1771 11x011223344556672890112x112233445566775255001122344557891x112334 568_2009692477721966246943364784502011100544491919164744011445192951901144749053412471111111217701 71034071004511780604355400822510871944745678418002800183244461405543191376 066474721246559937601926644774067406574065711655511359717533960714469377155775433767 452, 1699072001-1742445-90019792570-61752692572471-17114471744641907427417-07712767575655-9689827247 - 1-1-1-147707-5114245-90019792570-617526257-171174571-11254-617-97712767575655-9689827247 64643476667744979013746689686374475764761847938666964744669759669534440644744689863246 "54677788990111121"H 1223344"" « 6777" 901222" 0112233445" 76778899111 445566788901122-33445566770913 2211146554030878840032555555114271244111455264460788464477727527272111077 232111774 11704 113022017735 114424 113022017735 114424 113022017735 114424 113022017735 114424 113022017735 114424 11021 11001 11001 11001 10001 10001 1000 219511479022944362201055513706435063511662956:33066311149997104696125091097635037060511167294495710499710469510976350370605111072741107112294406351114999710469612509109763537060511107274060 14 77266 24416641962 24900 1305 23. 11777 603 25327155 2504 239494244 7175 -128 122 166 169 75 15 1 74 74 (011223344 . 799 1123344 . 547 022334474777 . 1122334445 . 47911133446 -917124220019292953659536222102099595222200164.5660 7033556545655744265200 1207542001922210149422210149424265200 1207542040 ت د المسلم المركبة الم 6 72 89 76 78 H 10466880% 1757 804446 -2 10 77 94 63 H 1-2233445.67269011122 0112233441.66 1-1-662%-1-3-35679%0-24402%0-1-1-3-4-57 4447753109665665039706566665039706674694544992244604991322446019273 438454543 52 2 1 53

Table 1 (a) (cont.)

Table 1 (b). Unobserved reflections with calculated value greater than F_{\min}

First column is h followed by k and $F(calc)=3\cdot3F(calc)$ absolute $F_{min}=66$. Number of reflections less than $F_{min}=1479$ Unobserved reflections were not included in the refinement.

	FMIN (F(CALC) < 2.0×F _{min}	(15)
L = 0 0 5 57 -7 7 55 L = 1	8 –9 57 L=2 12 –1 47 L=6 L=10 –1 –3 68 –8 –7 45 L=4 2 –9 45 –1 0 49 10 0 48 9 –4 47 7 –4 68 L=8 –4 8 46 10 –1 48 8 3 46 5 9 46	
	2.0×F _{min} < F(calc) < 3.0 × F _{min}	(10)
L = 1 -2 -1 101 -2 0 131	L = 2 -2 0107 1-11 109 L = 7 2 5129 -1 -4 90 0 0122 L = 5 -5 -2 117 -1 -3 116 L = 4 6 0111 L = 8	
	3.0 × F _{min} < F(calc)	(41)
L = 0 2 0 509 -1 1 468 1 1 513 -1 3 279 0 4 656 L = 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 448 2 397 4 450 - 5 1 260

precipitated immediately and was filtered. This product was recrystallized by making an ethanol suspension and adding water drop-wise until the solid dissolved. Greenish-yellow, air-sensitive crystals separated from the solution in the course of 24–48 hours. These were dried *in vacuo* yielding single crystals suitable for X-ray diffraction. A needle crystal $0.36 \times 0.43 \times 0.60$ mm was mounted with the long direction as the rotation axis (c). Preliminary Weissenberg and precession photographs (hk0 ... hk7, h0l ... h2l, 0kl ... 2kl) indicated a triclinic cell (International Tables for X-ray Crystallography, 1965), with $a=14\cdot1(1)$, $b=23\cdot5(2)$, c= $16\cdot4(1)$ Å, $\alpha=89\cdot2(1)$, $\beta=87\cdot9(1)$, $\gamma=90\cdot9(1)^{\circ}$, and Z=12. The systematic extinction for general hkl reflections with the crystal in this orientation was: h+k=2n+1 which demands a C-centered cell.

The crystal was aligned on an automated Picker full-circle diffractometer by variations of well known methods (Busing & Levy, 1967). Lattice constants were determined by least-squares refinement (Spofford, 1967) of the setting angles of 14 reflections that had been carefully centered on this apparatus. Using Mo K α radiation ($\lambda = 0.71068$ Å) the lattice constants at room temperature are: $a = 14 \cdot 130 \pm 0.009$, b = 23.601 ± 0.013 , $c = 16.436 \pm 0.010$ Å, $\alpha = 89.9 \pm 0.02$, $\beta = 87.9 \pm 0.1$, $\gamma = 90.8 \pm 0.1^{\circ}$. This centered cell was subsequently reduced to a primitive cell with lattice constants $a = 9.660 \pm 0.005$, $b = 9.581 \pm 0.006$, c = 9.880 ± 0.007 Å, $\alpha = 90.8 \pm 0.1$, $\beta = 87.4 \pm 0.1$, $\gamma = 92.0 \pm 0.1^{\circ}$ by the following transformations: $h_p = (3h_c - k_c - 2l_c)/6$; $k_p = (k_c - l_c)/3$; $l_p = (3h_c - k_c - l_c)/6$. The atomic parameters etc. are based upon this cell. The reduced cell is a = 13.501(5), b = 9.581(6), c = 9.880(7) Å, $\alpha = 90.8(1)$ $\beta = 134.4$ (1), $\gamma = 90.8$ (1)°.

The intensities of 3789 independent reflections were recorded by the θ -2 θ scan technique using unfiltered Mo K α radiation at room temperature. All independent reflections to 2θ = 60° were measured.* The peaks were

^{*} A number of reflections were carefully examined, and it was found that with a suitably narrow choice of scan width the Mo $K\beta$ peak could be avoided. This procedure gave a better background estimate for all but a few low order or axial reflections than with the usual Zr filter. For those reflections where the Mo $K\beta$ reflections clearly created problems, the reflections were measured with a filter and scaling was accomplished via the standard reflection that was also measured with the Zr filter. In general, the reflections for which Mo $K\beta$ created problems could be identified by examination of the backgrounds of each peak.

scanned for 45 sec $(1.5^{\circ} 2\theta)$ and backgrounds were estimated by stationary counting for 20 sec at $\pm 0.75^{\circ}$ (2 θ) of the peak maximum. Integrated intensities were calculated assuming a linear variation in background from the function: $I_{\text{net}} = I_{\text{scan}} - 1.125$ $(B_1 + B_2)$ where B_1 and B_2 are the background counts. Low angle reflections were scanned at a narrower width to prevent problems from the β peak and were then scaled accordingly. A reflection was considered nonzero if I_{net} was greater than $3.5 \times 1.125 (B_1 + B_2)^{1/2}$. 3005 reflections were found to meet this criterion. A standard reflection (one of average intensity) was measured after every ten reflections to monitor the stability of operation during the data collection. Deviation of the standard peak from the average during the entire data collection was less than 1.5 standard deviations with slightly less peak-to-peak variation. The take-off angle and crystal-to-counter, and counterto-source distances were 3.7° and 18 and 23 cm respectively; and the receiving aperture at the counter was 6 mm wide by 8 mm high. The peak width at halfpeak height for an average reflection was 0.31° (in 2θ) at the 3.7° take-off angle, indicating a reasonable mosaic spread for the peaks. The counting rate never exceeded 5000 counts per second and no attenuators were used. 575 symmetry-related reflections were measured and found to be in excellent agreement; apart from these only independent reflections were scanned. The linear absorption coefficient (μ) for this compound with Mo K α radiation is 17.6 cm⁻¹. No corrections for absorption* were made, but anomalous dispersion corrections were included in the refinement. Lorentz-polarization corrections were made, and the intensities reduced to structure factors.

* The neglect of the absorption correction no doubt makes our assessment of error optimistic. At the time of the solution of this structure (three years ago) our absorption program was not operating satisfactorily, Afterwards, we did not feel that the structure warranted the correction and subsequent computing time needed to refine the structure again. We now make routine absorption corrections on all data.

Table 2. Final atomic positional and thermal parameters and estimated standard deviations

E.s.d. of last figure in parentheses.

Anisotropic temperature factors of the form:

$\exp - [\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl] \times 10^4$	
--	--

	x	у	Z			x	у	Z
Ni(1)) 0.0000 (-)	0.0000 (-)	0.0000 (-	-)	C(3)	0.5720 (4)	0.3482 (4)	0.1717 (4)
Ni(2)) 0.5000 (-)	0.5000 (-)	0.5000 (-	-)	C(7)	0.5391 (6)	0.2949 (6)	0.0327 (5)
S(1)	-0.0202(1)	-0.2511 (1)	0.0487 (1)	N(3)	0.6953 (4)	0.3223 (5)	0.2141 (4)
S(2)	-0.0661 (1)	0.0512 (1)	0.2383 (1)	C(4)	0·4499 (4)	0.1748 (4)	0.6701 (4)
S(3)	0.4538 (1)	0.4370 (1)	0.2639 (1	l)	C(8)	0.4853 (5)	0.0318 (5)	0.7151 (5)
S(4)	0.5538 (1)	0.2575 (1)	0.5529 (1)	N(4)	0.3408 (4)	0.2294 (4)	0.7291 (4)
Cl(1)	-0.2487(1)	-0·0266 (1)	-0·0219 (1)	H(1)	0.207 (5)	-0.130(6)	0.191(5)
Cl(2)) 0.2499 (1)	0.4719 (1)	0.5332 (1)	H(2)	0.219 (7)	-0.256(7)	0.290 (7)
C(1)	0.0834 (4)	-0.3089(5)	0.1667 (4	1)	H(3)	0.194(5)	0.175 (6)	0.203(6)
C(5)	0.0653 (6)	-0.4557(5)	0.2163 (3)	H(4)	0.202(5)	0.260(6)	0.348(6)
N(1)	0.1800(4)	-0.2300(5)	0.2194 (4	1)	H(5)	0.762(8)	0.296 (9)	0.121(9)
C(2)	0.0353(4)	0.1557(4)	0.3315 (4	4) ->	H(6)	0.730(5)	0.370(5)	0.295(6)
C(6)	-0.01/6(5)	0.0.2033(6)	0.4693 (:	5) 1)	H(7)	0.285(6)	0.175(7)	0.802(6)
N(2)	0.1288 (4)	0.2025(4)	0.2907 (2	+)	H(8)	0.313(3)	0.319 (6)	0.704 (3)
	β_1	$_{1}$ β_{22}	β_{33}	β_{12}	β_{13}	β_{23}		В
	Ni(1) 57	(1) 69 (1)	62 (1)	5 (1)	-7(1)	4 (1)	H(1)	4 (3)
	Ni(2) 52	: (1) 74 (1)	58 (1)	4 (1)	-3(1)	6 (1)	H(2)	6 (5)
	S(1) 106	69 (1)	85 (1)	4 (1)	-38(1)	7 (1)	H(3)	5 (5)
	S(2) 73	(1) 94 (1)	64 (1)	-6(1)	0 (1)	-7(1)	H(4)	4 (3)
	S(3) 68	(1) 103 (1)	60 (1)	16 (1)	-7(1)	-7(1)	H(5)	8 (6)
	S(4) 85	(1) 77 (1)	73 (1)	11 (1)	11 (1)	15 (1)	H(6)	3 (2)
	Cl(1) 60	(1) 105 (1)	81 (1)	2 (1)	-7(1)	13 (1)	H(7)	6 (3)
	Cl(2) 56	(1) 108 (1)	82 (1)	0 (1)	-1(1)	6 (1)	H(8)	3 (2)
	C(1) 82	. (5) 89 (5)	59 (4)	27 (4)	1 (3)	7 (3)		
	C(5) 151	(7) 82 (6)	115 (6)	14 (5)	-22(5)	28 (5)		
	N(1) 96	(5) 135 (6)) 84 (4)	11 (4)	-30(3)	23 (4)		
	C(2) 89	(5) 68 (4)	64 (4)	12 (4)	-11(3)	3 (3)		
	C(6) 138	(7) 120(7)	/8 (5)	5 (5) 22 (4)	-3(4)	-18(4)		
	N(2) = 104	(5) 114 (5)	100(5)	-22(4)	-13(4)	-20(4)		
	C(3) 90	(5) (5) (5)) /3 (4) 70 (5)	0 (4)	3(3)	$\frac{0}{20}$		
	C(7) = 109 N(3) = 104	(7) = 124(7)	116(5)	55 (5)	-4(3)	-20(4)		
	C(4) = 104	101(7) 1(5) $75(5)$	73(4)	-12(4)	-0(4)	-27(3)		
	C(4) = 0.3 C(8) = 1.40	(3) (3) (3) (3) (3) (3) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	110(6)	-12(4) 8(5)	-9(5)	$\frac{12}{26} \begin{pmatrix} 3 \end{pmatrix}$		
	N(4) 04	5(1) - 12(5)	127(5)	2(3)	- (3)	44(5)		
	(1) 2.	, , , , , , , , , , , , , , , , , , , ,	, 147(3)	4 (1)	50 (7)			

Structure determination

Assuming space group $P\overline{1}$ the structure was solved by standard heavy-atom methods (Harris, 1964) and refined by the full-matrix isotropic least-squares method (Busing, Martin & Levy, 1962) without hydrogen atom contributions to an R of 0.089. Anisotropic refinement of all nonhydrogen parameters converged to an R of 0.048. A difference map at this point located all the amide hydrogen atoms, but the methyl hydrogen atoms could not be located.

A full-matrix least-squares refinement of all parameters using isotropic temperature factors for the hydrogen atoms and anisotropic temperature factors for all other atoms resulted in R=0.034, wR=0.039, and standard error of an observation of unit weight= 0.500.*

The function minimized in the least-squares refinement was $\sum w(|F_o| - |F_c|)^2$ where F_o and F_c are the observed and calculated structure factors with unit weights. Scattering factors for Ni²⁺, Cl⁻, and neutral sulfur, carbon and nitrogen were from Cromer & Waber (1965). Hydrogen atom scattering factors were from Stewart, Davidson & Simpson (1965). Anomalous dispersion corrections were included in the structure factor calculations by addition to F_c (Ibers & Hamilton, 1964); the values for $\Delta f'$ and $\Delta f''$ for nickel,

* $R = (\sum ||F_o| - |F_c||) / \sum |F_o|$. Weighted $R = \{[\sum w(F_o - F_c)^2] / \sum wF_o^2\}^{1/2}$. Standard error = $\frac{[\sum w(F_o - F_c)^2]^{1/2}}{(NO-NV)}$ where NO = 2953 observations: NV = 173 variables.

Fig. 1. Molecular packing diagram of the contents of the unit cell of *trans* dichlorobis(thiacetamide)Ni(II) looking down the [001] direction.

chlorine and sulfur were those given by Cromer (1965). The final tabulation of observed and calculated structure factors is in Table 1 (a). Unobserved data were not used in the structure refinement but selected reflections are included in Table 1(b). Final atomic positional and thermal parameters are listed in Table 2. Interatomic distances and angles, root-mean-square components of thermal displacement, dihedral angles between normals to planes, and their errors were computed (Busing, Martin & Levy, 1964) with the parameter and variance-covariance matrix from the last cycle of least-squares refinement and are listed in Tables 3, 4 and 5. Appropriate least-squares planes (Spofford, 1966) are also listed in Table 5.

Table 3. Interatomic and intermolecular distances and bond angles

Interatomic distances and angles

Bonding dis	tances (Å)	Angles (°))
Ni(1)-S(1)	2.460(1)	S(1) - Ni(1) - S(2)	89.38 (4)
Ni(1)-S(2)	2.458(1)	S(1) - Ni(1) - Cl(1)	83.05 (4)
Ni(2) - S(3)	2.459 (1)	S(2) - Ni(1) - Cl(1)	83.34 (3)
Ni(2)-S(4)	2.466(1)	S(3) - Ni(2) - S(4)	91.97 (4)
Ni(1)-Cl(1)	2.427 (1)	S(3) - Ni(2) - Cl(2)	96.43 (4)
Ni(2)-Cl(2)	2.430 (1)	S(4) - Ni(2) - Cl(2)	96.55 (4)
S(1) - C(1)	1.682 (4)	Ni(1)-S(1)-C(1)	116.2 (2)
S(2)—C(2)	1.674 (4)	Ni(1)-S(2)-C(2)	120.3 (1)
S(3)C(3)	1.676 (4)	Ni(2)-S(3)-C(3)	119.1 (2)
S(4) - C(4)	1.686 (4)	Ni(2)-S(4)-C(4)	117.3 (2)
C(1) - C(5)	1·497 (6)	S(1) - C(1) - C(5)	120.0 (3)
C(2) - C(6)	1.503 (6)	S(1) - C(1) - N(1)	122.5 (3)
C(3)C(7)	1.502 (6)	C(5) - C(1) - N(1)	117.5 (4)
C(4) - C(8)	1.502 (6)	S(2) - C(2) - C(6)	119.2 (3)
C(1) - N(1)	1.304 (6)	S(2) - C(2) - N(2)	124.0 (3)
C(2) - N(2)	1.308 (6)	C(6) - C(2) - N(2)	116.8 (4)
C(3) - N(3)	1.313 (6)	S(3) - C(3) - C(7)	119.8 (3)
C(4) - N(4)	1.303 (6)	S(3) - C(3) - N(3)	123.3 (3)
Avg. N–H*	0.89 (6)	C(7) - C(3) - N(3)	116.9 (4)
		S(4) - C(4) - C(8)	119.4 (3)
		S(4) - C(4) - N(4)	123.9 (3)
		C(8) - C(4) - N(4)	116.7 (4)
		Avg. C–N–H†	118 (4)
		Avg. H–N–H‡	122 (5)

* Range of N-H distances: 0.81-1.15 Å with e.s.d.'s of 0.05-0.08 Å.

[†] Range of C-N-H angles: $114-121^{\circ}$ with e.s.d.'s of 3-5°. [‡] Range of H-N-H angles: $113-128^{\circ}$ with e.s.d.'s of 4-5°.

Intramolecular H-bonded distances (Å)

	Ni(2)	
2.06 (6)	H(8)-Cl(2)	2.40 (6)
3.192 (4)	N(4)-Cl(2)	3.214 (4)
1.15 (6)	N(4) - H(8)	0.89 (6)
2.33 (6)	H(6)-Cl(2)	2.26 (6)
3.228 (4)	N(3)-Cl(2)	3.213 (4)
0.94 (6)	H(6) - N(3)	0.99 (6)
	2.06 (6) 3.192 (4) 1.15 (6) 2.33 (6) 3.228 (4) 0.94 (6)	Ni(2) 2·06 (6) H(8)-Cl(2) 3·192 (4) N(4)-Cl(2) 1·15 (6) N(4)-H(8) 2·33 (6) H(6)-Cl(2) 3·228 (4) N(3)-Cl(2) 0·94 (6) H(6)-N(3)

Table 3 (cont.)

Shortest possible intermolecular	H-bonded	distances (A	Á)
----------------------------------	----------	--------------	----

Cl(2) - H(4)	2.80 (6)	Cl(2) - N(2)	3.611 (4)	N(2)-H(4)	0.84 (6)
Cl(1)-H(7)	2.58 (8)	Cl(1)-N(4)	3.568 (4)	N(4)–H(7)	1.06 (6)

Table 4. R.m.s. component of thermal displacement along principal axes (Å) (e.s.d. in parentheses)

	1	2	3		1	2	3.
Ni(1)	0.159 (1)	0.176 (1)	0.181(1)	N(1)	0.164(5)	0.232(5)	0.259(5)
Ni(2)	0.156(1)	0.166 (1)	0·188 (1)	C(2)	0.166 (6)	0.180(6)	0.210(5)
S(1)	0.165(1)	0.183(2)	0.249(1)	C(6)	0.186(6)	0.244(7)	0.255(6)
S(2)	0.174(1)	0.182(1)	0.216(1)	N(2)	0.181(5)	0.230(5)	0.257(5)
S(3)	0.168 (1)	0.174(1)	0.225(1)	C(3)	0.169(6)	0.190(6)	0.217(6)
S(4)	0.170 (1)	0.184(1)	0.222(1)	C(7)	0.176(6)	0.247(7)	0.274(7)
Cl(1)	0.167 (1)	0.193 (1)	0.227(1)	N(3)	0.182(6)	0.235(5)	0.303 (6)
Cl(2)	0.163 (1)	0.200(1)	0.226(1)	C(4)	0.172(6)	0.179(5)	0.220(5)
C(1)	0.167 (6)	0.171(5)	0.227(6)	C(8)	0.173 (7)	0.245(6)	0.257(6)
C(5)	0.171 (7)	0.248 (6)	0.272 (6)	N(4)	0.170 (4)	0.220(5)	0.288 (6)

Table 5. Least-square planes of the type Ax+By+Cz-D=0

x, y and z refer to an internal orthogonal coordinate system (International Tables for X-ray Crystallography, 1967).

Plane No.	1	2	3	4
A	0.6308	-0.4422	0.3177	-0.5760
В	-0.2920	0.8020	0.8611	-0.3912
С	- 0·7189	-0.4017	- 0.3969	-0.7178
D	-0.3022	0.3348	- 3.9282	8.0288

Atom/plane

r neom, prano				
No.	1	2	3	4
S(<i>I</i>)*	-0.001 (1)	0.003 (1)	0.001 (1)	-0.004(1)
C(I)	0.004 (4)	-0.009 (4)	-0.002(4)	0.012 (4)
C(I+4)	-0.001(5)	0.003 (5)	0.001 (5)	-0.004(5)
N(I)	-0.001 (4)	0.004 (4)	0.001 (5)	-0.005(4)

* I refers to plane number. Hydrogen atoms were all within 3 e.s.d.'s (0.07 Å) of their particular thioacetamide plane.

Dihedral angles between normals of planes

Plane 1	Plane 2	Angle
Ni(1)-S(1)-S(2)	Ni(1)-S(1)-C(1)	59·3 (2)°
Ni(1)-S(1)-S(2)	Ni(1)-S(2)-C(2)	54.6 (2)
Ni(2)-S(3)-S(4)	Ni(2)-S(3)-C(3)	51.4 (2)
Ni(2)-S(3)-S(4)	Ni(2)-S(4)-C(4)	62.9 (2)
Ni(1)-S(1)-C(1)	S(1) - C(1) - N(1)	7.4 (4)
Ni(1)-S(2)-C(2)	S(2) - C(2) - N(2)	7.8 (4)
Ni(2)-S(3)-C(3)	S(3) - C(3) - N(3)	7.2 (5)
Ni(2)-S(4)-C(4)	S(4)C(4)N(4)	3.1 (5)

Description and discussion of structure

The structure may be described as isolated molecular units, Ni(tac)₄Cl₂ interacting with one another only by weak hydrogen bonds and/or van der Waals forces (Fig. 1). Each nickel atom has a coordination number of six with four sulfur atoms in a plane and two chlorine atoms in *trans* apical positions. Since the nickel atoms lie on crystallographic centers of symmetry (Fig. 2), the two nickel-chlorine distances for each metal atom must be identical. This is in marked contrast to trans-Nitu₄Cl₂, in spite of similarities in the spectra of these two compounds. In terms of the immediate coordination number and geometry about the Ni atom the present structure is more akin to trans-dichlorotetrakis(trimethylenethiourea)Ni(II), (TMeT)₄NiCl₂, and the dimorphic forms of *trans*-dichlorotetrakis(ethylenethiourea)Ni(II) (ETU)₄NiCl₂. In the present case the two crystallographically independent Ni–Cl distances are within 0.003 Å of one another and are not significantly different from the shorter Ni–Cl distance found in *trans* Nitu₄Cl₂ nor from the Ni–Cl distances found in *trans* (TMeT)₄NiCl₂ and *trans* (ETU)₄NiCl₂.

The thioacetamide groups are all oriented such that the methyl groups are turned to the outside. This orientation comes about due to fairly substantial N-H···Cl intramolecular hydrogen bonding, see Fig. 2(a) and (b) and Table 3. The shortest $N \cdots Cl$ intermolecular distances are at least 0.3 Å longer; consequently, the intermolecular hydrogen bonding is less important than the intramolecular hydrogen bonding. The thioacetamide groups remain planar upon binding with the metal, but these planes are tilted (52–64°) and twisted (3–7°). The tilt is defined as the dihedral angle between the NiS_4 plane and the Ni-S-C plane, whereas the twist is defined as the dihedral angle between the Ni-S-C plane and the thioacetamide plane (Table 5). The twist values found in the present structure analysis are comparable to the small ($\sim 2^{\circ}$) values found in Nitac₄Br₂ (Spofford & Amma, 1971) but are much less than the 17-28° usually found in thiourea complexes. (Nitac₄Br is a square planar NiS₄ unit with only nonbonded Ni-Br distances.) The four independent Ni-S distances are 2.460 (1), 2.458 (1), 2.459 (1) and 2.466 (1) Å. These Ni-S distances are in good agreement with those found in Nitu₄Cl₂, Ni(TMeT)₄Cl₂, Ni(ETU)₄Cl₂ and Nitu₂(SCN)₂ (Capacchi, Gasparri, Nardelli & Pelizzi, 1968) but are approximately 0.2 Å longer than those found in the four-coordinate Nitac4Br2 (Spofford, Boldrini & Amma, 1970). This difference between 'octahedral' nickel(II) and 'square planar' nickel(II) metal-ligand distances is to be expected.

The carbon-sulfur distance average of 1.679 Å with individual errors of ± 0.004 Å seems to be significantly shorter than the 1.713 (6) Å found for the free thio-acetamide ligand (Truter, 1960) but more than likely it results from an optimistic assessment of error in the present structure analysis as well as that in thio-acetamide.

The carbon-nitrogen and carbon-carbon distances lie within one standard deviation of the average of 1.307 Å with individual errors of ± 0.006 Å, and 1.502 Å with individual errors of ± 0.006 Å respec-

tively. Both of these values are expected for this ligand. The angles within the thioacetamide ligand are also those expected. The Ni-S-C angles of 116-120° in the present structure are somewhat larger than the 107-115° found in thiourea complexes as well as those found in Nitac₄Br₂ (110–114°). These differences are no doubt dependent upon differences in detail in hydrogen bonding rather than upon differences in bonding to sulfur. In fact, the differences in the tilt angles between the present structure and Nitac₄Br₂ can be correlated with hydrogen bonding. In Nitac₄ Br_2 , two independent tilt angles are 173 (2) and 175 (2) $^{\circ}$, and in the present structure they are 52-64°. In the bromide, the bromines are in essentially axial positions with S-Ni-Br angles of 71-75° but with long Ni-Br distances of 3.599 (4) Å, yet all four of the Br-N hydrogen bonded distances are 3.30 Å. In the present structure the Ni-Cl distances are much shorter at 2.43 Å with smaller tilt angles of 52–64° and Cl-N hydrogen bonded distances of 3.2 Å. The corresponding distance in *trans* Nitu₄Cl₂ is 3.23 (3) Å.

This research was partially funded by National Institutes of Health Grant No. GM-13985.

References

- BERTA, D. A., SPOFFORD, W. A. III, BOLDRINI, P. & AMMA, E. L. (1970). *Inorg. Chem.* 9, 136.
- BUSING, W. R. & LEVY, H. A. (1967). Acta Cryst. 22, 457; [KNOX, K., Master Card Program for Picker Four-Angle Programmer (1967), prepared by F. C. CARTER, Picker Instruments, Cleveland, Ohio, p. 11].
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Structure factor calculations and least-squares refinements were performed with a local version of ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE, Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CAPACCHI, L., GASPARRI, G. V., NARDELLI, M. & PELIZZI, G. (1968). Acta Cryst. B24, 1199.
- CAVALCA, L., NARDELLI, M. & BRAIBANTI, A. (1956). Gazz. Chim. Ital. 86, 942.
- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- FLINT, C. D. & GOODGAME, M. (1968). J. Chem. Soc. (A), pp. 744, 750.
- GASPARRI, G. F., MANGIA, A., MUSATTI, A. & NARDELLI, M. (1969). *Acta Cryst.* B25, 203.
- HARRIS, D. R. (1964). Patterson and electron density syntheses were calculated using '*ERFR-3*, a Threedimensional Fourier Summation Program Adapted for the IBM 7040 from *ERFR-2* of Sly, Shoemaker & van den Hende', Roswell Park Memorial Institute, Buffalo, N.Y.
- IBERS, J. A. & HAMILTON, W. C. (1964). Acta Cryst. 17, 781.
- International Tables for X-ray Crystallography (1965). Vol. I. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1967). Vol. II, p. 61. Birmingham: Kynoch Press.

- Fig. 2. (a) ORTEP drawing of *trans*-dichlorobis(thioacetamide) Ni(II) molecule containing Ni(1). (b) ORTEP drawing of *trans*-dichlorobis(thioacetamide)Ni(II) molecule containing Ni(2). Possibly significant hydrogen bonds are shown by dotted lines. We are grateful for the cooperation of Professor G. A. Jeffrey's research group at the University of Pittsburgh for these calculations.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, revised, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- LOPEZ-CASTRO, A. & TRUTER, M. R. (1963). J. Chem. Soc. p. 1309.
- Lüth, H. & TRUTER, M. R. (1968). J. Chem. Soc. (A), p. 1879.
- NARDELLI, M. & CHIERICI, I. (1957). Gazz. Chim. Ital. 87, 1478.
- NARDELLI, M. & CHIERICI, I. (1958). Gazz. Chim. Ital. 88, 359.
- NARDELLI, M., GASPARRI, G. F., BATTISTINI, G. G. & DOMIANO, P. (1966). Acta Cryst. 20, 349.
- NARDELLI, M., GASPARRI, G. F., MUSATTI, A. & MAN-FREDOTTI, A. (1966). Acta Cryst. 21, 910.
- O'CONNOR, J. E. & AMMA, E. L. (1968). Chem. Commun. p. 892.

O'CONNOR, J. E. & AMMA, E. L. (1969). Inorg. Chem. 8, 2367.

- ROBINSON, W. T., HOLT, S. L. JR, & CARPENTER, G. B. (1967). *Inorg. Chem.* 6, 605.
- SIRIGU, A. (1969). J. Chem. Soc. (D), p. 256.
- SPOFFORD, W. A. III (1966). Program for calculating leastsquares planes on the I.B.M. 1620.
- SPOFFORD, W. A. III (1967). Least-squares Program for Cell Constants for the IBM 1620.
- SPOFFORD, W. A. III, BOLDRINI, P. & AMMA, E. L. (1971). Inorg. Chim. Acta, 5, 70.
- SPOFFORD, W. A. III, BOLDRINI, P., AMMA, E. L., CARFAGNO P. & GENTILE, P. S. (1970). *Chem. Commun.* p. 40.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- TRUTER, M. R. (1960). J. Chem. Soc. p. 997.
- WEININGER, M. S., O'CONNOR, J. E. & AMMA, E. L. (1969). Inorg. Chem. 8, 424.

Acta Cryst. (1972). B28, 2647

The Crystal Structure of N,N-Bis-2-chloroethyl-N',O-propylene Phosphoric Ester Diamide Monohydrate (Endoxan)

BY S. GARCÍA-BLANCO AND A. PERALES

Instituto de Química-Física 'Rocasolano' C.S.I.C., Serrano 119, Madrid, Spain

(Received 28 February 1972)

Crystals of endoxan were crystallized from an ether solution at -10° C. The crystals are triclinic, with space group $P\overline{1}$ and cell dimensions: $a=13\cdot402$, $b=8\cdot669$, $c=6\cdot003$ Å, $\alpha=100\cdot3$, $\beta=96\cdot4$ and $\gamma=106\cdot8^{\circ}$. The structure was solved by direct methods for phase determination, and successive Fourier syntheses. The structure was subsequently refined by the full-matrix least-squares method to an R value of 0.042 for 2255 reflexions collected on an automatic diffractometer with Mo K\alpha radiation. All the hydrogen atoms were located in a difference Fourier synthesis. The molecules are held together in three dimensions by one N-H···O and two O-H···O hydrogen bonds.

Introduction

The study of the crystal structure of endoxan was carried out to collect new data for those interested in the use of citostatics for the chemotherapy of cancer tumours. Endoxan has partially solved some of the main problems caused by nitrogen mustard in the human organism (Arnold & Bourseaux, 1958). Mustards were used for a long time in the therapy of neoplastic diseases, since they can control the smaller metastases which are innaccessible by other techniques such as surgery and radiation.

The citostatic effect of the chloroalkyl-amine of the nitrogen mustard stems from the large lability of the chlorine atoms located in the β -position of the nitrogen atom. According to Ross (1945), the dissociation of these compounds results in a positively charged carbonium ion with biological activity. The amine groups of the mustard behave as alkylating agents in a biological medium reacting with active atoms of H. This is similar to the behaviour of SH groups in proteins or enzymes producing lessening of growth or even a destruction of the malignant cells.

Experimental

The crystals of endoxan were kindly supplied by ASTA-WERKE laboratories (Chemische fabrik, Westfalia, Germany). The samples were recrystallized from an ether solution prepared by means of ether extraction in a Soxhlet aparatus and subsequent cooling of the solution to a temperature of -10° . The crystals are prismatic with the longest dimension along the *c* axis. Preliminary cell dimensions were obtained from Weissenberg photographs taken from a crystal rotated about the *b* and *a* axes. Precise unit-cell constants were determined by the least-squares method from the angular settings of 24 independent reflexions measured on an AED Siemens diffractometer. The density was measured by flotation in a mixture of carbon tetrachloride and n-heptane.

Crystal data

Cl₂PN₂O₂C₇H₁₅. H₂O, M.W. 278·98, m.p. 40–41 °C, crystal size: $0.15 \times 0.26 \times 0.33$ mm. Triclinic, a = 13.402 (20), b = 8.669 (10), c = 6.003 (8) Å, $\alpha = 100.3$ (5), $\beta = 96.4$ (5), $\gamma = 106.8$ (5)°, $D_m = 1.41$ g.cm⁻³, $D_x = 1.423$ g.cm⁻³, Z = 2. Linear absorption coefficient for Mo K α radiation $\mu = 4.31$ cm⁻¹.

The statistical averages suggest that the electron density distribution within the unit cell is centrosymmetric. Hence the space group $P\overline{1}$ was assumed for the study, and this was confirmed by the successful structure analysis.

The reflexion intensities were measured on an automatic diffractometer (four circle AED Siemens) using Zr-filtered Mo K α radiation. Intensities for 2552 reflexions were measured by scanning in the θ -2 θ mode